首页> 外文OA文献 >Deep Multi-task Learning for Railway Track Inspection
【2h】

Deep Multi-task Learning for Railway Track Inspection

机译:铁路轨道检测深度多任务学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Railroad tracks need to be periodically inspected and monitored to ensuresafe transportation. Automated track inspection using computer vision andpattern recognition methods have recently shown the potential to improve safetyby allowing for more frequent inspections while reducing human errors.Achieving full automation is still very challenging due to the number ofdifferent possible failure modes as well as the broad range of image variationsthat can potentially trigger false alarms. Also, the number of defectivecomponents is very small, so not many training examples are available for themachine to learn a robust anomaly detector. In this paper, we show thatdetection performance can be improved by combining multiple detectors within amulti-task learning framework. We show that this approach results in betteraccuracy in detecting defects on railway ties and fasteners.
机译:铁轨需要定期检查和监控,以确保安全运输。最近,使用计算机视觉和模式识别方法进行的自动轨道检查显示出通过允许更频繁的检查同时减少人为错误来提高安全性的潜力。由于不同的可能故障模式的数量以及图像的范围广泛,实现完全自动化仍然非常具有挑战性可能会触发错误警报的变化。而且,有缺陷的组件的数量非常少,因此机器没有很多训练示例可用来学习鲁棒的异常检测器。在本文中,我们表明可以通过在多任务学习框架内组合多个检测器来提高检测性能。我们表明,这种方法可在检测铁路枕木和紧固件的缺陷时带来更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号